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ABSTRACT. This paper details I description of the pattern of gdaxy image distortion over the entire sky cauwd by the 
gravitational lenring which ia the tad of large rcde inhomogeneitia in our universe. We present a tensor rphericd 
harmonic formalism to describe this pattern, giving many uwful formulae. Thir is applied to density inhomogeneitia, 
where we compute the angular power spectrum of the rhear pattern, aa well as the noise properties due to finite galaxy 
aampliag and cosmic variance. We show that a detectable levd of shear ia present for very nearby gdaxia, L s 0.2. 

For such a rhdlow nample much of the largat signal-t-noise coma from very large angular ucda, 0 2 loo, dthough 

it is in the form of very smdl rhear at a level 5 10-j. 

1. Introduction 

In recent years gravitational lenses have provided a set of extremely useful tools for understanding the universe 

around us. One of these tools, sometimes called the orientation correlation function or OCF, is a method whereby one 
searches for alignments in the orientations of galaxies on the sky (Tyson, Valdes, and Wenk 1990). Such alignments 
will be caused by the deflection of light by the gravitational field of mass concentrations in front, of the galaxies one is 
observing. In the weak lensing approximation the OCF is determined by the shear of the image deformation caused 
by this bending of light. Large format CCD’s have made such observations of weak lensing shear possible and there 
have been numerous studies of the mass concentration in clusters of galaxies with this technique (Tyson, Valdes, and 
Wenk 1990, Bonnet& Meiler & Fort 1994, Fahlman et al. 1994, Smail, Ellis & Fitchett 1994, Smail & Dickinson 1995, 
Tyson and Fisher 1995, Squires et al. 1996&b, Luppino & Kaiser 1996). It is in the direction of clusters of galaxies 
at moderate redshift where the shear is liable to be greatest and the size of the central parts of such clusters is a 

good fit with the typical field of view of many CCD cameras, i.e. about 5’. Away from the direction of clusters of 
galaxies the shear is liable to be much smaller. In principle one should be able to detect very small shears by looking 
for alignments among a greater number of background galaxies. One might obtain these greater numbers either by 
taking deeper images, which has the advantage that shear will increase with depth, or by looking at larger areas on 
the sky. With the advent of very large CCD mosaic cameras with a large field of view one can expect much wider 
area surveys looking for weak lensing shear. A limiting factor in such wide surveys is the small amplitude of the shear 
one is trying to measure, and further study is required to see just how small one can reduce systematic errors when 
looking for galaxy alignments. 

One of the most interesting applications of weak lensing which is to map the mass distribution as close to the 

local neighborhood as possible. This will allow a comparison of the galaxy distribution and the mass distribution 
which should help us to understand galaxy formation and biasing. Gould and Villumsen (1994) have pointed out that 
the Sloan Digital Sky Survey (see Kent 1994 for a description of the “SDS!!?‘) which is imaging one quarter of the sky 
should be able to meaSure the mass distribution around the Coma cluster. Whether this goal is achievable depends 
on the level of non-correctable systematic errors, however even if present imaging surveys are not successful one can 
expect that very large area weak lensing surveys will be achieved sometime in the future. 

Predictions of the angular distribution of shear and amplification on the sky has been made in the context of 
the small areaS on the sky where the small angle approximation is utilized (Blandford et 41. 1991, Miralda-Escudk 
1991, Kaiser 1992, Kaiser and Squires 1993). This is quite natural given that most weak lensing observations would 
be limited to extremely small patches on the sky. However looking ahead to a time when the area on the sky surveyed 
becomes large, such as in the SDSS, one will need to go beyond the small angle approximation in order to characterize 
the weak lensing pattern one observes. This is not to say that the lensing deflection angles will be large, they will not, 
but rather that when the area on the sky becomes large one needs to take into account, the ‘curvature” of the celestial 
sphere when computing things like shear-shear correlation functions. Since the shear is not a scalar quantity, but 

rather a rank-2 tensor, one can not simply use the the scalar spherical harmonic expansion. In this paper is presented 
a tensor spherical harmonic expansion which the author feels is rather well suited to describing the shear pattern. 
Most published expositions of tensor spherical harmonica were motivated by describing 3-d tensor gravitational fields 
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and these expositions are complicated by the additional formalism needed to describe the 3rd dimension (see Thorne 
(1989) for a review). The formalism described here is rather simpler as it is restricted to symmetric traceless tensor 
fields on the 2-d sphere. Although developed independently this formalism is very close to that of Zeriili (1970). 

The paper is arranged as follows. In 52 we describe the decomposition of the shear pattern into two geometrically 
distinct types in a formalism which is easily generalizable from the small-angle approximation to the celestial sphere. 
In $3 is considered the various approximation used when computing the image distortion in lensing. In 54 is presented 
the tensor spherical harmonic decomposition of the shear, with a large number of useful identities. In §5 the tensor 
harmonic expansion is used to work out the formalism to describe the shear pattern produced by density perturbations 

in an Einstein-deSitter universe. In 57 we estimate the accuracy one might expect to obtain in measurements of the 
shear due to the “shot noise” from the finite number of galaxies that are available to probe the shear, and to %osmic 
variance* (fi m e sampling). In 57 the formalism developed is applied to a phenomenological model of the density ‘t 

perturbations in our universe and illustrate the type of shear pattern one might expect to find and how it compares 

to the shot noise and cosmic variance. In Q8 we summarize the results. 

2. Scalar and Pseudc+Scalar Shear 

The shear gives the degree to which images of objects we see on the sky are elongated, after factoring out the 

intrinsic shape of the actual objects. The shear at a point has an amplitude and a direction and may be described by 
a symmetric traceless matrix, i.e. 

70, = -r 
( 

COS 2Q sin 2~ 

sin29 
1 

-cos2Q * (2-l) 

Here 7 measures the amplitude and Q the direction wrt to some fiducial position angle on the sky. Of course the 
direction is modulo x not 2x since stretching an image in one direction is the same as stretching it in the opposite 
direction. Note that rotating the direction of the shear by 90° changes the sign of the the shear, while rotating the 
shear by f45’ produces a shear which is orthogonal to the original, in the sense that TO’& = 0. (The Einstein 
summation convention is used here and throughout this paper.) Whether one rotates 45’ to the right or 45O to the 
left changes the sign of the shear. One can construct any shear matrix by linear combinations of a given shear matrix 

and one rotated by 45O. 

Here we are concerned with shear fields on the sky. In this section we consider the small angle approxima- 
tion where the sky is approximated as a Euclidean plane. 
decomposition, e.g. 

One may write any shear field on a plane as a Fourier 

x,(23 = -& JdV [P(47 (f,.b - ;V’kbf) + d@(il; (f,ocCCb + f&2] f(n;Z) = 263 (2.2) 

where <is the 2-d wavenumber on the (planar) sky and 

f,ob = -A!-- ta, = 
0 1 

aaaaz) ( 1 -1 0 * (2.3) 

The tensor I?“) is known as the Levi-Civita symbol in 2-d. The y@ modes have shear directed parallel to {while the 
r@ modes have shear rotated 45’ to the right from the <direction. This is all one needs to construct an arbitrary 

shear field. 

Since the r@ modes are just given by derivatives of the scalar mode function f(<, z?) we will refer to this part 
of the shear as the rcalat shear. The 78 modes are a geometrically distinct component of the shear, given by the 2nd 
derivative matrix off but multiplied by the ec( which has the effect of rotating the scalar shear by 45’ to the right in 

a right-handed coordinate system or 45’ to the left in a left-handed coordinate system. A change in the handedness 
would have the effect of multiplying the pseudoscalar shear tensor by -1. This sign difference depending on the 
handedness of the coordinate system means that the component of the shear transforms as a pseudoscalar rather 

than a scalar, and it is called the pseudo-rcalot component of the shear. The two types of shear pattern are illustrated 
in fig 1. One can represent any pattern of shear by a sum of scalar and pseudoscalar shear 

The decomposition we have just described is similar to the decomposition of a vector field into it’s vertical 
and non-vertical parts. Note however that in 3-d for each Fourier mode their are two linearly independent vertical 
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components and one must choose a azimuthal angle about the wavenumber to specify one. For this reason one cannot 
write these vertical modes in terms of derivatives of the scalar modes eikex plus a handedness as this will not specify 

the azimuthal angle. In 2-d one may express arbitrary vector and tensor fields in terms of scalar functions Levi-Civita 

symbols, as we have done above. There is not the distinction between scalar, vector, and tensor components of fields 
higher dimensions. 

In the usual treatment of gravitational (or non-gravitational) lensing, one thinks of the lensing as being a 
displacement field on the sky, i.e. in a given direction on the sky what one sees is at a true position in space which is 

the apparent position displaced by some amount, &. This is what we will later call the displacement approximation. 
For arbitrary gravitational perturbations it is problematic to define what the apparent position is a hence what the 

displacement field is. In the next section it is argued that for weak fields it is an excellent approximation to treat the 
lensing as a displacement field on an unperturbed space-time and this is the approximation we will use here. Let us 

denote the displacement from apparent to true position on the planar sky by iI. The 2 x 2 deformation matrix is 
given by 

(2.4) 

which we have decomposed into term which gives the trace, a term which gives the symmetric traceless part, and a 
term which gives the anti-symmetric part. The trace gives the ezponsion, n, the tracelesa symmetric part give the 
shear, r.b, and the anti-symmetric part gives the rotation, w. The image amplification is l/((l - n)’ - r3 + wl) or 

approximately 1 + 2n in the weak lensing limit. An arbitrary displacement field can also be written as a Fourier 

integral of scalar and pseudo-scalar components: 

Aa(3 = -& /& [PKJ f,a + #qn’, f&] f(f, 2) = e-. (2.5) 

Note that f,ccca rotates the gradient off by 90’. When the deformation is given by a displacement field on a Euclidean 

plane we find the following relations 

van = +yfo* VW = -p@&. (2.6) 

Since Va is invertible the scalar shear is given by the expansion, n, while the pseudescalar shear by the rotation, w. 
A scalar and pseudescalar displacement field is illustrated in figure 1. 

It is unlikely that anything other than density inhomogeneities contribute significantly to the shear in our 
universe. These density inhomogeneities produce scalar metric perturbations. One shouldn’t confuse the “scalar”-ness 
of density perturbations which has to do with transformation properties in 3 spatial dimensions, with the “scalar”-neas 
of the shear which has to do with transformation properties on the 2-dimensional sky. Nevertheless it is true that 3-d 
scalar perturbations will only produce 2-d scalar shear, at least in the weak lensing limit. In contrast tensor and vector 

metric perturbations will contribute to both scalar and pseudescalar shear, however we expect this to be very small. 
Thus we really do not expect there to be any significant pseudescalar shear. We have chosen to include pseudescalar 
shear in our analysis for a variety of reasons. Most importantly because the pseudo-scalar shear is part of what one 
measures when one looks at galaxy alignments, and one should not leave it out of ones analysis. Also, one never 
knows, maybe the pseudo-scalar shear field is not negligible, one should meaSure it and see! 

Kaiser (1992) noted that the redundant information in the shear field could provide a useful check of ones 
observation. One can determine the pseudescalar w in the same way one determines the scalar n if one first rotates 
the galaxy position angles by 45”, and then one should check that the derived w is is consistent with zero. (Kaiser et 
al. 1994; A. Tyson private communications; Stebbins, McKay, and Frieman 1996). Just such a procedure has been 
implemented in Luppino and Kaiser (1996) where they compare +“+) to rab ,,&b showing that the latter is indeed 
much smaller than the former in the field of the cluster of galaxies ms105403, and consistent with zero. 

3. Approximations 

In this paper we make predictions of extremely small image deformation. These are calculated using a number 

of approximations and one must be careful that the approximations are accurate enough so that these predictions are 
accurate. In other words one must be sure that there are not other small but significant contribution to the lensing 

which are not included. Many approximations become more accurate aa the image deformation becomes smaller, while 
others do not. In this section we identify most of the approximations used here. None of these approximations are new 
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Figure 11 In the top left panel ie shorn a rcalar pattern of gravitationd deflections. SC& de&ctione are parallel (or anti-parallel) 

to the direction of variation of the deflection. In the top right panel ir shorn a prcrdo-acolor pattern of gravitational deflections. 

Pseud-scalar de&ctione UC HO0 from the direction of variation of the ddection. For an arbitrary pattcm of gravitational 

de&&one one will transform the scalar components of the de&ctione into peeud-scalar componente and vice versa by rotating the 

de&ction direction by 90°. Plotted in the bottom left panel is a scalar pattern of dlipticities generated by applying the d&ectiona 

in the top left panel to a square array of circles. SC& shear produces cllipticity patterns which are parallel and perpmdiculer to 
the (horiaontd) direction of variation of the ellipticities. Scdu shear produces imaga which are magnified or dana&ied. In the 

bottom right panel ir shorn the pattern of elliptiut:er induced by a the defiectiom in the top left panel. Pseudwscalar elliptidtia 
oscillate between being +45’ and -45* from the axection of variation. In the weak lensing limit peeudo-ecalar shear doa not 
amplify the images. One will tradorm the ecalar components of the ehcu pattern into pseud*scalar componentr of &ear and vice 

versa by rotating the object ellipticitiee by 45O. Such a trdormation will not change the magnification or the dieplacement of 

the object8 on the ky, m rotated A &ear will still exhibit (de)ma&fkation while rotated pseudo-scalar shear will not. While 

shear patterns cannot drays be treated ae the result of a de&ction it is usuaUy a good approximation to do K). 

to this work, and not all studies of gravitational lensing make use of all of the approximations used here. Below we 
will use the geometric optics approximation in weak field gravity for perturbations from Friedman-Robertson-Walker 
space-times. These are clearly excellent approximations for cosmology. It is generally assumed that we are in the ‘Lweak 
lensing” limit, namely that the deformation tensor of eqs (2.4) & (4.1) are close to the identity matrix, although many 

of the formulae are true even for strong lensing. For isolated regions around galaxy clusters, galaxies, and stars weak 
lensing will not be a valid approximation, and generally as one goes to smaller angular scales the stronger the lensing 
becomes. To what extent effects from small scale strong lensing creep into larger scales is a subject which needs further 

study. 

When computing image distortion we integrate the perturbation to a beam of photons along the unperturbed 

path of the photons. To do otherwise would be to include terms which are formally 2nd order in the metric perturbation 
so one can argue that this is part of the weak lensing approximation. Even when the image distortion is large this may 
also be a good approximation if the statistical properties of matter field which one traverses on the perturbed trajectory 
are quite similar to that traversed on the unperturbed trajectory. However the argument that density perturbations 
only produce scalar patterns of shear rests largely on the assumption that it is valid to use the unperturbed trajectory. 
In general for strong lensing one can expect density perturbations to produce both scalar and pseudescalar shear. 
An exception occurs when the mass which produce the strong lensing is localized to a narrow range of distances. In 
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this case one can still use the unperturbed trajectory to compute the total deflection accurately. Thus in studies 
of lensing around individual galaxies or galaxy clusters one can assume that the shear pattern is purely scalar since 
it is unlikely that two large mass concentrations will line-up sufficiently to contributed significantly to the lensing. 
However on small enough angular scales the strong lensing will be due to a variety of objects along the line-of-sight 
and the shear pattern will contain both scalar and pseudo-scalar components. Again further study should be done on 
the contamination by small scale strong lensing of larger scale weak lensing. 

One approximation which is important for this paper is what will be called the defiedion opprozimation. 
Namely that one can think of the effect of gravitational lensing as a deflection, where the light has been deflected 
from a “straight path” in an underlying flat geometry. While this is a perfectly valid description for lenses made of 
refractive materials in flat space, it is only an approximation for gravitational lensing. This is because there really 

is no underlying flat geometry, after all the light is deflected because the space is not flat. Below we will argue that 
in the cases of interest the space is flat enough so that this deflection approximation is a good one. Even though in 
this paper we consider very weak lensing, the image distortions we consider are still much weaker than the intrinsic 
distortion pattern caused by the curvature of spacetime. Note that this is not an intrinsic property of the weak lensing 
approximation, but rather has more to do with how the amplitude of metric perturbations in our universe vary with 
scale. If we had very large perturbations entering the horizon today much of the image distortion would be a result of 
the global geometry rather than the deflection. 

Let us try to make these ideas more precise. In $5 of this paper we consider the lensing due to density 
perturbations. The deflection as a function of distance from the observer is computed using the metric evaluated 
on the unperturbed path, i.e. by twice integrating the “gravitational acceleration” of the photon perpendicular to 
the unperturbed path. With this deflection we compute the intersection of both the unperturbed trajectory and the 

“deflected trajectory” with a surface defined by a fixed coordinate distance from the observer, i.e. r = ,/zs + ys + zs, 
which we will call the (‘source sphere”. We use the the Jacobian of the mapping of the Newtonian coordinates from 
the deflected position on the source sphere to the undeflected position as the deformation tensor in eqs (2.4) or (4.1). 

This procedure has some obvious failings. Firstly if the photons do not intersect the source sphere at right angles then 
even for photons which are not focused or sheared the Jacobian matrix will contain an eigenvalue of l/cost? where 6 
is angle between the normal to the surface and the direction of the perturbed photon trajectory. Thus even if there 
is no true image distortion one would infer a de-amplification and shear. This error is not large, in the sense that 
the leading error is a @, so is an insignificant error in the sense of weak lensing. In cosmology the deflections are 
rarely greater than lo-’ radians even when the lensing is strong. A more worrisome error comes from the fact that 
the source sphere defined above is not truly spherical in geometry. Scalar perturbations in Newtonian gauge have an 
isotropic metric so the intrinsic geometry of the source sphere does not lead to any spurious shear. However a small 
coordinate patch spanning a coordinate area A on the source will actually spans a physical area (1 - 2Q/ca)A where 
0 is the Newtonian gravitational potential. Unless one corrects for this one will add a spurious contribution to the 

expansion, K, of 201~~. Since this contribution to rc is linear in the metric perturbation it does not become arbitrarily 
smaller than the true signal in the weak lensing limit. However, for our own universe we know that 0 5 10-6cs while, 

as we will see below, n 2 10 -‘. Thus by ignoring the intrinsic geometry of the source sphere we only make a small 
error. As mentioned above, the reason for this fortuitous numerology has to do with the shape of the power spectrum. 
No such fortuitous numerology applies to the case of gravitational lensing from gravitational radiation, so one cannot 

use the deflection approximation in this case. We do not consider lensing from gravitational radiation in this paper. 
We will ignore the intrinsic geometry of the source sphere in the rest of the paper. While it is not terribly cumbersome 
to include this term, it would invalidate the simple and accurate relationship between the different components of the 
image distortion, n, w, and rob as expressed in eq (2.6), or implicitly in eq (4.10). 

A more general treatment of image distortion, can be gotten from the optical scalar equation (e.g. Hawking & 
Ellis 1973; Schneider, Ehlers, & Falco 1992) whereby one measure the distortion of a bundle of light rays with respect 
to an orthonormal basis parallel transported along with the light rays from the observer. This approach makes no 
approximation other than assuming the validity of geometric optics. It would be too cumbersome for our purposes 
to use this approach on unperturbed trajectories, i.e. to use ray-tracing. One could approximate the optical scalar 
equation by implementing the same procedure along an unperturbed trajectory. One property of the optical scalar 
equation which is something of a drawback is that since the parallel transported basis vectors will rotate with the 
photons, this method does not yield any information on image rotation. While in the case of strong gravitational fields 
it is difficult to make a sensible definition of image rotation, in the case of weak fields where the image distortion is 

generally much larger than the metric perturbation there is a real sense in which images may be rotated and it would 
be useful to include this effect in ones computations. 
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In $5 and afterwards a set of assumptions and simplifications are implemented. We do only consider a flat 
matter-dominated Einstein-deSitter cosmology-, although one could clearly generalize all of formulae to open or closed 
cosmologies with or without a cosmological constant. The formulae used in f5&57 aSSume that the perturbations grow 
according to linear theory. This is a good approximation on large scales 2 10 h-‘!+Ipc but we when we consider the 
shear at shallow depths we do venture into a regime where linear theory is not appropriate. In fact the model power 
spectrum in $7 is n-linear on scales of interest. One could try to correct this by having the power spectrum vary as 
one looks back in time, i.e. with radius. Since the results presented here are meant to be illustrative this approach 
is not warranted. In any case since the emphasis is of this paper is on shallow surveys these sorts of corrections are 
liable to be small. 

4. Decomposition of Shear on the Celestial Sphere 

Even though the coherence in the shear field falls off with separation there will be some small coherence even 
over very large angles on the sky. To understand this large angle coherence one must take into account that the sky 
is a sphere and not a plane. Here we consider the weak lensing on the celestial sphere, i.e. the sphere of the sky. 
For the moment we consider the image deformation at a fixed distance but later generalize the analysis to include the 
fact that the galaxies whose images are distorted span a range of distances. Thus we have the a mapping from the 

direction in which you are looking, ti, to the direction you are looking at, rir, at a given distance, r. The effect of the 
lensing is to displace the photon trajectory at a given distance by the 3-d vector A = ti - ti. If the angle by which 
the light rays are bent are sufficiently small then A and ii are nearly perpendicular so that we may approximate A 
as being in the tangent space of the the direction sphere ti, i.e. A(r) is a vector field on the sphere. As in 52 we may 
define the deformation tensor and it’s various components 

gab + A.:) = +oc = (1-~)!+‘.zb-%b+~hb (4-l) 
where and AS:) refers to a covariant derivative of A wrt the metric go, on the sphere.’ Here n, cab, and w give the 
expansion, shear, and rotation. The shear is defined such that gobra& = 0 which fully specifies n. From the shear field 
one may define two new quantities 

7, = v-a~,$ab rp = v-a~a)‘bc&. (4.2) 
where V-z is the inverse Laplace operator on the sphere, i.e. 

V’# E &,” V-‘&’ = 4 + constant. (4.3) 
We must add the arbitrary constant because the V-z is not completely defined since Vz has a zero eigenvalue which 
corresponds to the constant, 1 = 0, eigenmode. Here 1 gives the eigenvalue of the Laplace operator which is -I(I + 1). 
The quantity 7, is contributed to only by the scalar part of the shear, as described in 52, while the quantity r,, is 
contributed only to by the p.seudc+scalar part of the shear. From 7, and r,, one can fully reconstruct 70,. However 

from 70, or from 7, and rp, one cannot, in general, fully reconstruct the displacement vector A. As we shall see, the 
1 = 1 eigenmodea do effect A but not Tab. The fact that the 1 = 0 eigenmodes also do not contribute to 70, does not 

matter since it also does not contribute to A. By definition n and w have zero mean and therefore no contribution 
from the 1 = 0 eigenmode. It therefore makes since to define 7, and ri, to have zero mean and therefore no contribution 
for the 1 = 0 eigenmode. By construction they have not contribution from the 1 = 1 eigenmodes. 

Above we have used the completely antisymmetric tensor defined by 

‘ab=$(:;ll px,) ‘ab=$(!l ;) g=hbll (4.4) 

which commutes with covariant differentiation, i.e. cob:, = 0. When e& is contracted with a l-index vector it has 
the effect of rotating the vector by 90°. Whether the rotation is to the left of right can be chosen arbitrarily, but 
whatever choice one makes the sign of e,,b is multiplied by -1 under a parity transformation, and thus a leftward 
rotation is transformed to a rightward and vice-versa. Thus quantities containing odd numbers of cob’s are odd under 
parity and we refer to them a pseudo-scalar part of the shear. Note also that the shear l ,zh(i) yields another traceless 
symmetric tensor which if interpreted as a shear tensor has it’s shear rotated by 45’ wrt that of the original shear 

tensors. Rotating the displacement vectors by 90° corresponds to rotating the shear by 45’. Performing either r’ these 
rotations will transform a purely scalar patter to a purely pseudescalar one, and vice-versa. 

‘All of the indexed quantities are components of t-rm on the sphere. Below we will use the coordinate bases defined by .pnericd 

polar coordinatea, (e,&) OP the sphere. Although the two baais vector are orthogond they are not orthonormd, and in particuar. t-r 

componenta with a 4 index will contain extra factors of ain’ B when compared to t-n defined with respect to an orthonormd Bahia in 

the same direction. 
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Spherical Harmonic Expansion 

In analogy with the Fourier expansion of f2 we may expand the displacement vector on the sphere in terms of 
a spherical harmonic functions Y c,,..,(ri). These functions are defined such that 

V2Y(,,*)(;l) = -I(1 + l)q,,*)(n) I d’ii y,,,, Y&, = 611r6,,,. 

Using 2-d spherical geometry this implies the identities 

YI,*, 
:ab 

:ab = v2v2&., + q,,,, = l(l+ 1) (I(1 + 1) - 1) q*, 

I 

d’fiY(,,,,:., Y(:~,-t, Iab = l(l+ 1) (I(1 + 1) - 1) 61/1&Q . 

(4.5) 

(4.6) 

The spherical harmonic analog of eq (2.5) is 

Aa = - 2 2 (~~,m.)hW + $?,,&.):b~ba) 
l=l ??a=-1 

(4.7) 

including both scalar and pseudo-scalar displacement. Note that we do not include a 1 = m = 0 term in the sum since 
Y (O,O):o = 0. Furthermore since A0 is real we require 

d@ (I,*) = w)m4:,*)* @.*) = FlYv~,,)’ since q.-*) = (-1Y qt.,,. (4.8) 

In the above decomposition the @‘+ terms give the scalar part of the displacement vector which is proportional to 
the gradient of the spherical harmonic, Yt,,,,. The pseudoscalar part, given by the #@ terms, is proportional to the 
gradient of q,,,, rotated by 90°. The deformation tensor is then given by 

‘a’ = gab - c c (~:,m.&-):ob + &f,&+&) (4.9) 

I=1 m=-I 

and it’s component parts by 

70, = 2 5 (@,m.,(~h):ab - ;!hb~i,,,,:.:') + bt,,,; 

1x0 m=-I 

(~~.-):oc~cb + Y(,..m):b~~~a) 
> 

(4.10) 

where we have used eq (4.5). In the shear we do not include the 1 = 1 terms, since the deformation tensor from these 
modes do not contribute to the shear as we will see below. Combining (4.2,6,&10) one finds 

7, = (-v-),/,ab:.=b + 4 = f g 2 Cl+ 2)(1- 1) @*) q,, 
r&l m=-I 

r,, = -(v-2$,):bcta, - v-2(“,~,b):bc~oc) Z1 gfJ c (1+‘4(1- w~,*,q,*, 
I=lm=-I 

(4.11) 

and that the I= 1 terms do not contribute to either -y, or -yP. For large 1 we recover the small angle result, i.e. 7, = n 
and rP = -w. These relations hold for any deformation of our sky onto the 3-d space, but they are nevertheless 
they are non-trivial consistency checks. For example one can hope to measure both 7, and n, the former from galaxy 
alignments and the later from galaxy brightness distributions in various bands. These being independent measures of 
the same thing would provide a consistency check. If they were found to be inconsistent then would discover that one 

is not measuring variations in alignments and brightnessea due to an image deformation. Measurement error, Galactic 
extinction, intrinsic alignments, intrinsic galaxy clusterings and other effects will all contribute to inconsistencies. 
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Decomposition of Distortion Pattern 

Given combinations of A”, IF, w, r,, rP, or yab one can compute the mode coefficients via 

1 
I$$ _- 

2 

(‘--) = l(1 + 1) J d% Y&,:a Aa = +L 
I(1 + 1) J d’xi Y& Aa,, = - - 

l(1 + 1) 
d’ii y;,-, n 

I 
d@ - 

1 
(I.-) = +q + 1) d’ii Yc;,-,,, A’(‘) = -- J d3xi Y(L) 

2 

I(1 + 1) 
Ab:,ca, = - 

I(1 + 1) 
d% Yc;,-, w 

6@ 1 (I,-) = +rp+ l)(l(l+ 1) - 1) I 
d% ?;,-,,,a, tiab = 

1 
I(1 + 1) - 1 J daft q:.*, (7s + 4 

P 
1 

(‘--) = +l(l + l)(l(l + 1) _ 1) J d’n%,:*~~Cb 11 
*b - 1 

- l(l + 1) _ 1 J fh y:.*, (3 - w) (4.12) 

P 
2 

“‘-‘=+(1+2)(1+ql(l-q J ab - 
dahi:*-Pb~ --(1+2f(l-1) J d’h Y(:,-, -or 

P 
2 

(I.*) - - +(l + 2)(1+ l)l(l - 1) J 
:li Y(:,*):*c l Cd -fad = - 

2 
(I+ 2)(1 _ 1) ☺ d�~~:**~~P 

using the orthonormality relation of eqs (4.5&S). We see that one cannot obtain the 1 = 1 terms from the shear since 
substituting I= 1 in the last four expressions one finds that the prefactors are infinite while the integrals are zero. 

Mean Square Expansion, Rotation, and Shear 

For a given realization of the shear pattern one can construct the quantities 

+ 
P(l+ 1)z * 

c IGLI’ 
4w+ 1) m--, 

F = ‘,‘:::,y; f: IqJ. 
m=-I 

(4.13) 

The - notation is used to indicate that these quantities may be used as estimators of the power spectra coefficients, 
CF and Cy, defined below. Combining the decomposition in eq (4.10) 
we find that the mean square n, w, and ra( averaged over the sky is 

with the orthonormality relations of eqs (4.5&6) 

(4.14) 

- - 
7 = -117”bl1 = ;7’“7., = = 21+1 (1+2)(1-l) - 

I(1 + 1) 

where llr’bll indicates the determinant of the matrix Tab. We use the notation - to indicate averages over the sky. One 
expects the mean square shear to receive it’s largest contribution from small angular scale so that the large 1 terms 

dominate these sums. If this is the case then 7 x z+ w z. One could construct equations analogous to eq (4.14) for 
mean-square values after convolution with a window function by one could include a IWrjz factor to each of the terms 
of the sum, where WI is the spherical harmonic decomposition of the window function. 

Explicit Construction of the Shear Tensor 

Here we give the explicit expression for the shear tensor in terms of the spherical harmonic mode coefficients. 
Using spherical polar coordinates, (fl, d), the metric and anti-symmetric tensor are 

9 = sir)‘& Eab = ( yit, “b”“) (4.15) 
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so (4.10) becomes 

Tab = + 2 2 dF,-, 

I=’ WI=-I 

~yl+*~‘ee~, l;>,e qls*,:#+ ly 

,* : ’ (I.*): 

+g 2 df,-., fsineY- ri.L;:u 
( 

i sin e Y(i,-j:ee - & %*,:N 

I=’ ml=-l b-w - m L+4+ sine L):84 
) 

To continue we need the explicit form of the spherical harmonics, which we take to be 

b,(e, 4) = 
\i 

21+ 1 (I - m)! -- 
4* (l+m)! 

P;“(cos e) eim+ (4.17) 

following the conventions of Jackson (1975). 

Using this explicit form of the spherical harmonics one can show that the deflection vectors Y{I,O,:beba, (ql,+l):b + 

q1. )cb.a, --1):b and i(Y~I.+1):b-Y~I.-1):b)t)Ol are generators of solid body rotations of the sphere. Clearly solid body rotation 
generates no amplification or shear, but does translate and/or rotate the images and thus we see why the 1 = 1 pseudo 
scalar displacement contributes nothing to the shear, 7.b. The 1 = 1 scalar displacement is just the pseudoscalar 
displacement rotated by 90’ which would yield a shear rotated by 45’. 
zero, so must be the 1 = 1 scalar shear. 

However since the 1 = 1 pseudescalar shear is 

Let us defining two auxiliary function via 

21+ 1 (I- m)! c+ -- 
4% (I+ m)! w(CO~ 4 eim’ = ~b:ee - ~q,.*,:(, 

/~06.,(co~ 8) eim4 = ~,,+e4 

or more explicitly 

q,*,b) = - (g$ + $(l - 1) ) p;“(z) + (I+ m,& p;2l(Z) 

G,+(z) =* ((I - 1) & P;“(z) - (I+ 4 & PI?,(z)) 

we find from substituting (4.18) into (4.16) that 

7ee = -- = 2 dqgl /@ (d$,.., G~,-,(cos 0) - i4:,-, G;,-,(cose)) eim+ sin’ e I=’ 

Note the symmetry relations 

qL*, - = *t-l)“’ ;; ; ;I; GE,-, (4.21) 

and the orthonormality relations 

1 l 

5 -1 J dz (Git-,(+:~,&) + G,,,(z) G,,,-,(z)) = 
(1 + 2)! (I+ m)! 

4(21: 1) (I- “P 

1 l 

5 -1 J dz (Git-,(z) G,&) + G,&) G;,,-,(z)) = o 

(4.18) 

(4.19) 

(4.20) 

(4.22) 

From these identities one can rederive the formula for 7 in eq (4.14). 
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Below we will find that it is of particular interest to calculate the shear at the pole of the coordinate system. In 
spite of the fact that the coordinates system is singular at the pole, mode expansion at the pole takes a particularly 
simple form. The coordinate singularity means that one should consider only Tee in the limit 0 - 0 for a given value 

of 4. In this limit the value 7,# will retain an $-dependence and from this one has the angular dependence of the 
shear. One finds that in the e = 0 limit that only m = f2 contributes 

G,*,(l) = ~~6,,’ f a &,-’ (4.23) 

which on can use to compute the 2-point correlation function of the shear. 

Correlation Function8 and Power Spectrum 

Henceforth we shall explicitly include the radial r-dependence of the deformation since we may be interested in 
correlating the different components of the correlation at different redshifts. We shall also be considering a statistical 
distribution of deformation fields. Averaging over realizations, one can characterize any set of 2-point functions in 
terms of the power spectra which we choose to define by 

(4.24) 

The Kronecker C-functions and the lack of m-dependence follow from the assumed homogeneity and isotropy of the 
distributions we are considering. We include a dependence of the deformation with depth r. We will also assume that 
the distribution of deformations is even under parity as it would be for gravitationally induced deformations. Since 
#@ is even under parity and +@ is odd under parity it follows that 

( b~,,,(r)~~,,,,,‘(r’)) = 0. (4.25) 

Both Cp (r, r’) and C,“(r, r’) are real and are non-negative when r = r’. 

The correlation functions of various quantities can be computed in terms of the correlation function 

Clr(r, r’, 19) = (n(r, ii) n(r’, ii’)) = &ii 21+ 1) Pi(co.99) C,“(r,r’) 
l=l 

C,(r, r’, 6) = (w(r, ii) w(r’, ii’)) = & 2(21+ 1) fi(cos9) Cy(r,r’) 

I=1 

(n(r,ti)w(r',i')) = 0 
Q) 

C,(r, f’, fl,t+ 4) = & C 21+ I 
I’(1 + 1)’ 

(C,“(r,r’) GG,,,(cosd) + Cp”(r,r’) G,,,(cosd)) cos 29 cos2p’ 
k-2 (4.26) 

+(C?(r, 7’) G&,(cosfi) + C,“(r, r’) G$,,,(costJ)) sin 2~ sin 29’ 1 
a0 21+1 

&(f, r', 9, p) = -& C - 1=1 l(l + 1) cl% r') mc4 cos b 

O" 21+1 
&(r,f',fl,cp) = +&- - 

I=' IV+ 1) 
Cl@ (r, f’) Pf(cos 9) sin 2~ 

In each of the above expressions 9 = L(ir, iY), i.e. the angle between the two points. C, measures the correlation of 

78, with itself, while C,, and C,, measures the correlation of 74, with IC and w, respectively. The meaning of (p and 
9’ are described in fig 2. Setting C p 

The C++(Q), C+x(~), 

= 0 in C, we obtain a correlation function similar to those in Kaiser (1993). 
and C,, (a) of that paper corresponds to setting p = ‘p’ = P, cp = cp’ + % = Q, 9 = (p’ = Q - 5. 

Kaiser (1992) paper did not include pseudescalar shear since this is not contributed to by density perturbations. 
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From the above correlation function one may calculate the the mean square quantities at a given distance 

= 21+ 1 (I + 2)(1- 1) 
(4.27) 

Note that the factor (I + 2)(1- l)/(i(i + 1)) = 1 + 0(1-s), and since most of the shear is expected to be generated at 

very small scales we find 

(rl) % (ic’) + (cd’). (4.28) 

Remember that although (4.14) is quite similar to (4.27) the former refers to averages over the sphere for a given 
realization, which could be a observed quantity, while the latter refers to an average over realization and is a purely 
theoretical construct. The reasons that the formulae are so similar is because, by construction, 

(F(r, r’)) = Cy (r, r’) (?(r, r’)) = C,“(r, r’), 

7% Yz i.e C, and C, are unbiased estimators of C,@ and C,@, respectively. 

Comparing (4.26) with the orthonormality relations, (4.5&6) as well as 

1 l 

5 -1 J dZPf(E) P,,(z) = - l 611~ 
21+ 1 

(4.29) 

(4.30) 

we see that if one knows the correlation functions one may calculate the power spectra using 

J 
1 1 Or 

C,@(r, r’) =2r dz P,(z) CK(r, r’cos-l z) = - 
-1 (1+2)2(1-l) -Id= o J J dpPF(z) C,x(r, r’,cos-1 t, cp) cos2tj 

1 1 07 

C,“(r, r’) =2* J dz Pi(z) Cw(r, r’coswl z) = - 
-1 (1+2)2(1-l) -ldz o J J dpPF(z) C&,(r, r’, cos-1 z, cp) sin 24 

4 
C,@(r, r’) =- ’ /’ dt /,“dp ~l’d~‘C,(r,r’,c~-Ll,ip,p’)x 

* (I+2)s(1- 1)s -1 

(Gz,7j(z) cos 2~ co9 2~’ + G,,,(z) sin2p sin 29’) 

4 
C,@(r, r’) =- 1 /‘dz iaT+ ~~TddC,(r,r’,cos-l=,~,Ip’)x 

x (I+2)9(1- I)1 -1 

(G:,,,(z) sin 29 sin 2~’ + G,,,(z) cos 29 cos 2~‘) 
(4.31) 

Small-Angle Limit 

Now let us consider the small angle limit of the formulae just derived. Over small angles the surface of the 
sphere is approximately a plane, and the wavenumber, I, can be consider modulus of a 2-d vector wavenumber in this 
plane in a Fourier decomposition of the displacement if 2 > 1. This Fourier representation is context in which most 
analyses of image deformation has been analyzed, and the formulae derived above should approach this Fourier limit 
for I > 1 over regions much smaller than one radian. In particular the angular correlation function should approach 
the Fourier limit for I > 1 and 9 < 1. In the small-angle large-l limit one can show 

G~,,,,(cos~) = (-I)“f16-“(Jm-~(~~) f J,,,+,(M)) +o(‘, Y,B’) 

P;l(cos8) = (-l+&le)rm + (7 
(4.32) 
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Thus in the small-angle approximation the correlation functions become 

C%(r, r’, 9) X & J mdllJ~(~tY)C~(r,r’) C,,(r, r’, 9,‘~) = -& J O” dl I Ja(19) C,“(r, r’) cos 29 

G(r, r’, 8) 23 & J mdllJo(lt9)C,@(r,r’) C,, (r, f’, 8,‘~) = + & J mdllJa(1t9)CF(r,r’) sin 29 

C, (7, r’, ~,9,9’) = -& J [ O” dil 

(4.33) 

(C,“(r,r’) (Jo(M) + Jd(lS)) + Cf’(r, r’) (JO(M) - J,(M))) co9 29 co9 29’ 

+ (C,“(r, r’) (Jo(M) - 14(M)) + C,“(r, r’) (Jo(lS) + J,(M))) sin 29 sin 2~’ 1 
while the small angle limit of (4.31) is 

CF (r, r’) z2r J mdWL,(19)CJ r,r’S) a -2/oadt9t9 1 d9Ja(19)C,,(r,r’,9,9) ~0~24 
0 

Cg (r, r’) =2x J wd99.T~(19)C,(r,r’t9) z -21md9t9 1” d9 Ja(M) C,, (7, r’, fl,cp) sin 24 

CF(r,r’)ai ~~daa~a~d9I..d9’C,(r,r’,a,9,9’)(~o(z~)cos2(9-9’)+~,(~~) COS2(9+9’))’ (4’34) 

C,“cr,r’)zi ~~d~~~a~d9~a1d9’C,(r,r’,9,lp,9’)(Jo(16)cos2(9-9’)-JI(IB) COs2((p+p’)) 

Using a 2-d definition of a power spectrum where 

(f(ii)f(;l’)) =~$~P,(I)J,,~I) a= +,n’) 

0 

we see that 

P,(l) = 

and that rob is described by these same two power spectra, e.g. 

(q) e (d) + (wy x 2x J ODdu(~.(~) + P,(I)) x & J’=dll(C,$(Z) + c,“,. (4.37) 

(4.35) 

(4.36) 

Visibility Functions 

To measure the shear one typically looks for correlations in galaxy ellipticity orientation, and one needs enough 
galaxies to find the correlation in the noise generated by the random orientation of the galaxies. Usually one doesn’t 
know the distance to the galaxies except in a statistical sense, and even if one did, one would have to sum over galaxies 
at different distances to obtain a significant signal. Thus the shear at a given distance is not what one measures, but 
rather some weighted average of the shear at different distances. We may represent this distribution of distances by a 
visibility function, V(r), normalized so that 

J 
00 

dr V(r) = 1, (4.38) 
0 

so that the average expansion, rotation, and shear is 

iqii) = Jrn dr V(r) n(r, it) qq = 
0 J 

00 
dr V(r) w(r, ii) T+a,(fi) = 

0 J 
OD 

dr V(r) m (r, fi). (4.39) 
0 

One can apply all of the formulae derived above by replacing the quantities at fixed distance with the same quantities, 
averaged over distance, e.g. the mode coefficients 

?$,=, = L OD dr V(r) 4!,,)(r) c,-, = J 0 
Q, dr V(r) df,.., (rh (4.40) 
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Figure 2: Here ia illuetratcd the meaning of the variables in the l-point correlation function C,, CT,,, and C,,. The thick &id 

line repruentr the geodesic connecting the two pointr on the celcstid sphere in qucrtion, 5 and d’, rho= lagth is 6. The thin 

solid line at 5 giver the orientation of the component of the sbeu that is bw correlated, which is rotated p from the direction of 
the geodesic. For the &ear-abear correlation function, C,, we &o need the orientation of the component of the Aear at 5’ which 

k givm by (p’. The handcdneu of the coordinate system ir important C,,., rincc it changes sign if cp - --cp. The rotation of cp ia 
to the right in a right-handed coordinate ryrtem. Note that the crud aphericd pok coordinata, (e, 6) are urudly left-handed op 

the sky since re view the celutid rphere from the inaide. 

or the correlation functions 

Cs(9,..-) =lmdrV(r) ~mdr’V(r’)C,(r,r’,9,...). (4.41) 

where E might be rc, w, or 7. 

* It is not the purpose of this paper to be terribly realistic about how one samples the shear with a given galaxy 
sample. The only visibility function which we will consider explicitly in this paper corresponds to uniform sampling 
in space up to a given distance, rmu. The visibility function in this case is 

V(r) = 3-& 
rmu 

where r,, gives the maximum comoving distance which one includes in ones sample. 

5. Application To Density Inhomogeneities 

(4.42) 

Here we consider the image distortion from a linear growing mode density field in a matter-dominated Einstein- 

deSitter cosmology. For these growing modes the Newtonian gravitational potential is constant with time at a given 

comoving position. It is convenient to use the Spherical Harmonic - Spherical Bessel function expansion so the 
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1 

Figure Sr Plotted ee a function of I, for a power IAW spectrum of tity perturbations, is the ratio of the true C,” to that 
computed with the a~ptotic appmrimotion of eq (5.9). The power law index, n, is 0.9 for the crosses, 0 for the circles, -1 for the 

triangles, and -2 for the squares. The erron continue to become smaller for Larger I. The ratio for 1 = 1, which contributea nothing 
to the &ear, in not ahown for n 5 -1 &ICC the true vdue diverges for these spectral indices. The asymptotic approximation ia 

accurate except for vuy rmdl 1. 

gravitational potential may be expanded 

a(?, 0,4) = 2 f: Jm dh i’s,,,,,(k) jl(kr) ~~...)(e, 4) i=Om=-l 0 m 6 ,h-j(k) = i o J drrajl(kr)LTdB sine~~d)u,:,_,(e,~~~(r,e,~~’ (5.1) 

where r is the comoving distance from the observer. For the spatially flat geometry we are considering, these modes 

are orthogonal eigenfunctions of the Laplace operator. For an statistically homogeneous and isotropic distribution the 
correlation function of mode amplitudes is of the form 

(&r)(k) z;,,,..#‘)) = (WaP4k) $6(k - k’) f$,t 6,,,,, 

where Pa is the power spectrum of the potential fluctuations. Using the relation between the potential and overdensity, 

VaQ = 4xaaG6p = 
3 H2 
#, 

we may also relate the potential power spectrum to the density power spectrum: 

4 
Pa(k). (5.4) 



Below we will use the notation ti for (@,b). Cl early these scalar modes will lead only to scalar components to the 
image deformation. Thus we may describe the deformation by a scalar function 

A,, = -@LI cqy+, = 0. (5.5) 

Comparing eq (5.5) with eq (4.12) we find 

d@(r, ti) = 2 II:::, dv’ r ,ior’;” G(x,b + (~b - 11’) b, 7’) = 2 1’ dr’ $ Q(r’, ii), (5.6) 

and comparing this with (5.1) we see that 

‘4%+(r) = 2/o~dkks~~,,,(k) /ddr’ $ jl(kr’) = 2 /,= dk k’&,,+(k) Il(kr) 

where 

4(z) = 1’ $! (1 - y) j,(v) 1 > 0. 

(5.7) 

There is no need for an 1 = 0 term since there is no 1 = 0 contribution to shear or expansion. In the appendix we 
present analytic expressions for Ii(z) as well as series and asymptotic expansions. We will argue below that in most 

practical applications Ir is well approximated by eq (A6), i.e. 

I,(t) 23 aI - z X(2 - %) 
( 1 

aI JiFvy1 =-- 
21 r-(F) 

*, = WY+? 
Tq 

which we call the wympiotic opprozimolion. Combining (4.24), (5.2), (5.4), and (5.7) we find 

J 
a, 

C,“(r, r’) = 16xa1’(1 + 1)’ dk k’ Il(kr) &(kr’) P+(k) 
0 

4 
= 36ra1’(1 + l)a ()J 9 

O3 dk o F II L(kr’) Pa(k) 
Taking into account a visibility function one finds 

4 

$j = 36*‘1’(1+ 1)’ (I/ ? o- 3 li;(k)la 8(k) 
where 

z(k) = J- dr V(r) Ii( 
0 

From the asymptotic series of eqs (A4&5) we see that 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

k’;;T limT(k) = c21+ l)!!(l+ 1j q= 
k-0 

- o drV(r)r’ J 
Q) 

crux = iLEIl(k) = J;Trw 
21 r(q)’ 

(5.13) 

i.e. ?;(k) goes grows like k’ for small k and goes to a constant for large k. Most visibility functions one might consider 

are peaked around a typical distance which we denote by r.. The transition region between these two asymptotic 
forms of eq (5.13) occurs at kr. - 1. In general z(k) is a monotonically increasing function of k. 
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Deep Large-Angle Shear 

Let us define the spectral index n by 
d 

n E kzPJ(k). (5.14) 

Comparing the asymptotic form of eq (5.11) with eq (5.13) we see that the Cr@ is well defined if ra < 1 for large k and 
n > 1 - 21 for small k. It seems likely in our own universe that n 5 -1 at large k while n - 1 for small k so there is 
no convergence problem. 

In most cases the dominant contribution to c,$ is predominantly from wavenumbers k - l/r,. The only 
exception to this rule that one is likely to encounter in practice is when one considers small I and deep samples. This 
arises because we expect to that on large scales the power spectrum will go to an n = 1 Harrison-Zel’dovich, i.e. 

P(k) x Ak kr,, 5 1. (5.15) 

The evidence for this comes only from measurements of large-angle CMBR anisotropies (Smoot et of. 1992). Studies 
of galaxy clustering have not yet reached large enough scales to see the spectrum approach n a 1. With weak lensing, 

if r./l Z h, we expect to probe larger scales than rnr. In this case the integral of eq (5.11) will have it’s a largest 

contribution from the :gion where n e 1 and z(k) is approximately constant, i.e. the large k limit of z(k) but the 

small k limit of Pa(k). ,ind the integral will be approximated by 

r. >lr,,. (5.16) 

Since the contribution to this part of the integral is only logarithmically dominant we never expect this to be an 
extremely accurate approximation. On the other hand the this expression is not very sensitive to rnr or the way the 

power spectrum turns over from n = 1 at small scales. The contribution to $ comes from the wavenumbers in a 
broad range from k - l/r. to k - l/r,, rather than from a narrow range of wavenumbers near k - I/r.. In our 

universe it is likely that the l-1 shear averaged over a depth of a gigaparsecs will receive significant contribution from 
scales of a few hundred megaparsecs to gigaparsecs. 

Volume Limited Samples With Power Law Spectra 

As an example we compute the angular power spectrum of the shear in a volume limited sample of galaxies in 
the case where the density power spectrum is a power law in wavenumber, i.e. 

P(k) = Ak”. (5.17) 

For a pure power law both C,$ and F have an ultra-violet (large k) divergence if n 2 1 and an infrared (small k) 
divergence if n + 21 5 1. Combining the visibility function of (4.42) with the asymptotic approximation of eqs (A6) or 
(B9) one finds the approximate result 

Eyb 81x32” 
13-” (11 - 3n)(6 - n)r(l -n) 

(I+ 1)1-n 

z 324x3(11 - 3n)(6 -n) 

We illustrate that the error in this approximate result is small in fig 2. We see that for n 5 1 eq (5.18) is an excellent 
approximation for all 1 while for smaller n there are only significant corrections from small I. In our universe the 
density power spectrum is not an exact power law but may be approximately so at small and large scales. It is 
probable than on scales < lOOh-‘Mpc that n z -1 while at large scales n z 1. We see that eq (5.18) diverges as 

n + 1. This logarithmic divergence is regulated by a cutoff at small scales as explained above. 

One can argue that the asymptotic approximation of eqs (A6) and (B9) is a very good approximation when 

applied to our own universe. This follows from the fact that for deep galaxy catalogs it is the large scales which are 

relevant for the small 1. At these large scales n x I, which is where eq (5.18) is extremely accurate for all 2. It is true 
that this asymptotic approximation may be off by a - 30% at 2 = 2 for extremely shallow surveys, but as we shall see 
below one needs a fairly deep survey to measure the shear. 
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Small-Angle Limit 

The small-angle shear has been studied extensively elsewhere and provides a useful check on our results so far. 

The large-l limit of Ir in eq (A7) is appropriate for small angle correlation functions. Taking this limit we find that 

(5.9) b - ecomes 

Cy(t,r’) e 18x31 (1-h) (1-k) Pa(k) I>,. 

Thus eq (4.37) becomes 

(72) x (2) a yrndllC~(r,r) = g (y’r3jwdkkPa(k) 
0 0 

and using 

?=2(1-A) 

we finds that the rms shear at the redshift z is 

Jq= m= 2x (I- +J [;~~wd~w~)]i 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

which agrees with eq (83) of Blandford et al. (1991) and eq (2.3.6) of Kaiser (1992). Note that the polarization, p, 

used in these papers is twice the shear, 7, used here. Furthermore Blandford et al. (1991) uses units where Ho/o = 1 
while Kaiser (1992) uses units where iHo/a = 1. Finally note that P(k) in Kaiser (1992) is defined to be a factor 

(2~)~ larger than that used here, while Blandford ei al. (1991) use the same Fourier convention as here. 

Distance-Limited Sample at Small Angles 

Now let us consider the average shear in a spatially uniform sample going to a maximum distance rmur i.e. use 
the visibility function of eq (4.42). In the small angle limit we obtain 

7= 18x31 ($j4j-- 9 (‘+ .,(krlu)3 - &)’ P6tk) (5.20) 

and thus 

(5.21) 

Comparing (5.21) to (5.17) we see that the average shear in a distance limited sample is roughly 0.64.. . times the 

shear at the edge of the sample. 

Power Law Power Spectra for a Distance-Limited Sample 

NOW let US also specify the power spectrum, choosing a power-law overdensity correlation function 

((r) G (6(x)6(x’)) = (y+” f = Ix - X’I (5.22) 

which is equivalent to the power-law power spectrum 

h(k) = 
ri+“r(-;) k” 

23+"qm(9) 
-3<n<o. 

Substituting this into (5.20) we obtain 

(5.23) 

1 r(-z)r(l - n) 
Ia+324xfi(11-3n)(6-n)- 

1 r(v)r(8-n) 
(if!?+' (-2L)3+n -3<n<O. (5.24) 
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which is equivalent to 2nd expression in (5.18). The reason for the divergence at n = 0 is because the correlation 
length, ro, is ill-defined for n > 0. Apart from this n-dependent divergence of the correlation length the l-dependence 
is correct for n < 1. For power law spectra the shear two-point correlation is given by 

Cd4 e y (11 - 3n)(6 - n) ;;; 1;; e g (+)3+n (+y&K -2<n<0 (525) 
. . 

Ci(9,cp,cp’) x G(S) (cos2(r- cp’) + (‘+-;)yy) cos2(lp+d)) 

The correlation functions diverge for n c -2 due to an infrared divergence. The integrals which give these correlation 

functions are formally convergent at large 1 for any n, however for n > -1 the contribution to the integral is dominated 

by the behaviour of the integrand at 1 > l/9. Thus for large n the results obtained are sensitive to our assumption 
of exact power law behaviour over a broad range of scales. 

One must be careful about evaluating these expressions for integer values of n. While it may appear that there 
is a singularity at n = 0, note that Cz is zero at n = 6, and CT is smooth at ra = 0. Note that these power-law spectra 
cause the correlation function be be singular at ZI separation which leads to certain pathologies. For example C, 

is negative for all 9 if n > 0 while the coefficient .‘os2((p + cp’) in CT has a positive divergence as 9 4 0. If we 

were to regulate this divergence at small scales we would find that Cz would be positive and finite at 9 = 0 while the 

coefficient of cos 2(~ + cp’) in CT would go to zero. 

While the power spectrum of mass fluctuations may indeed be a power law down to very small scales, we can 
only measure shear averaged over a finite region of the sky and this averaging decreases our sensitivity to the the 

divergent density fluctuations at large scales. On small scales, the convolution of the shear pattern with a Gaussian 
beam corresponds to multiplying the angular power spectrum by exp(-lad) where Q is the (LGaussian width” of the 

beam, which is related to the FWHM by afrbrn = 2mcr. For a Gaussian beam we obtain 

EdS) M SlJ;;(ll - 34 (6 - n) 
r(y)r(-;)r(l -n) Her,, ’ 

r(y)r(8 - 7~) 
(--) (&)3+nIF$$;l;--$)& (5.26) 

where rFr is a generalized hypergeometric function. Here we have used the notation z(9) to indicate that we are 
taking the correlation of the smoothed quantities. Simpler expressions can be found for the variance of zerolag (i.e. 
ti = 0) smoothed quantities : 

~(0)~81~(11-3n)(6-n)1’+” 
r(F)r(-gr(i - 7~) 

r(y)r(8 - n) -2<n<O. 

Gto, cp, 9’) = G(O) cos 2(P - $0’) 
(5.27) 

6. Accuracy of Shear Measurements 

When the shear is weak, i.e. when y < 1, the way one goes about measuring shear is by looking for alignments 

in the apparent orientation of background galaxies. The implicit assumption is that there is no significant intrinsic 
alignment of galaxy ellipticities and any apparent alignment must be due to a coherent shear in the image. As discussed 

above this is not liable to be exactly true but is liable to be a excellent approximation. One can measure the apparent 
shape of galaxy, g, using the ellipticity tensor (Kaiser 1992) which is 

g, = Q’S’,, - QiQ: _ A6 = A,# 03s 2~’ sin 2xg 

Qg Q!c - Q!Q! 2 a) 2 sin 2x0 - cos 2x0 
(6-l) 

where QJ, Q:, Q’,, give the Oth, Ist, and 2nd moments of the galaxy brightness distribution on the sky. Here xg is 

position angle of the galaxy and eg E [0, l] it’s the ellipticity. If the true galaxy position angles are randomly oriented 
then the expected ellipticity is * 

te’,b)& = (1 - $% %b (64 
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in the weak lensing approximation. Here {. q .)r indicates an ensemble average over galaxy orientations, and 2 gives 
the mean square ellipticity. Given the range of possible ellipticities the proportionality constant between ellipticity 
and shear varies by only a factor of 2 between perfectly circular galaxies. e 9 = 0 and highly elongated galaxies, e# = 1. 

The variation from the expected value is 

((et, - (e~,),)(ef~ - (efj,)), = ~~6&(gd7bd + cod%) 

where again got is the metric on the sphere of the sky and e.) the Levi-Givita symbol. For perfectly circular galaxies, 

e# = 0, the apparent position angle and shape gives the shear precisely, while for non-circular galaxies there is 

considerable variance. Typical intrinsic galaxy shapes have e 7 - (0.3)a. Note that if one makes random measurement 

errors in the shapes of galaxies then one should add this in quadrature to the deviation from the expected value in 
eq (6.3). Given the fairly large intrinsic error due to galaxy non-circularness one would have to make rather large 
measurements errors to significantly increase ones uncertainty in the determination of the shear. Roughly speaking 
one needs N N 2’/[8(1 - $T)‘r2] objects to obtain a determination of the mean shear in a patch of the sky with 
S/N- 1 if one has perfect measurements. Since typically one is looking for 7 - 0.01 one needs significantly more than 

100 perfectly measured galaxies or even more when one includes measurement errors. Of course the main problem in 
practice will be non-random measurement errors, i.e. errors in galaxy shapes which are correlated between different 

galaxies. 

Below we will consider estimating the shear from a uniform all-sky survey of galaxies. We will allow for an 
arbitrary weighting of different galaxy types, given by a parameter wg for each galaxy. This weighting might depend 
on the apparent shape (not orientation!) of the galaxies, the colors, or the apparent magnitude. Given this weighting 
there are a variety of different definitions of the number of galaxies in one survey, in particular one may define it with 
different powers of war i.e. 

N, (c4 pq(‘)(& 6 ) = 
41 = # g 

( 
0 

) 8 

where C-functions are normalized such that 

J d%6(‘)(ii - iig) = 1. 

(e-4) 

and (a . .)z indicates an ensemble average over galaxy positions and orientations, but not over realizations of the shear 
distribution. This is only possible because we will be assuming that the galaxy distribution and shear distribution are 
independent. We do not expect this to be exactly correct, however it is probably a fairly good approximation since the 
galaxies which sheared are so far from the galaxies associated with the mass-distribution which is doing the shearing, 

that the correlations are fairly weak. 

An estimator of the radially weighted shear is given by 

?a,@) = 
C, wgeibcW(ii - iig) 

N,l (1- 42) * 
(6.6) 

One should, of course, not take the C-functions as meaning the shear in concentrated in small patches of the sky, rather 
one should average thie estimator over an angular patch large enough to contain many galaxies, and thereby obtain 
an estimator of the angle-averaged shear. Using the weak lensing formula, (6.2), we find that 

C# WJ 6(+i - it,) 00 

(?abti’))8 = hbtrgr b)), 
>, 

= 

%l J drV(r) %b (7, q = Tab 6) (6.7) 
0 

where we have defined the visibility function, V(r): 

( cg w#atr - rg) 
V(r) = 

>, 
4*Ng1 ’ 
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Here we have assumed isotropy and homogeneity on the sky, so that the radial and angular distribution of galaxies 
factorize. This shows that y,,(ri) is an unbiased estimator of y’,,(ri). Of course one needs to know the distribution of 

galaxies in ones sample to determine V(r) and thus to know what q,)(h) is an unbiased estimator for. In the weak 

lensing limit we may use eq (6.3) to determine the mean square error in this estimator, which is 

CS,*h 4 - To*(rr 4) c= red rr, &‘) - Tcd(f’, c’)))g = -$$ ( 2 
61 (1 - p) 

a (&xgbd + hcfbd) 6(‘)(fi - ti’). (6.9) 

Comparing this correlation function with CT of §4 we find the correlation function of the error in the estimator of 

eq (6.6): 

Nga 
qv, ‘pt 4) = 7 

2 
4Ng1 (1 _ ;“)a cos2(v - cp’) J;_moW - c-cos~) (6.10) 

where the superscript “sn” refers to the shoi noise from the finite number of galaxies. We may also compute the power 
spectrum for the shot noise by substituting CF into (4.31): 

q3.n = qasn = z I(1 + l) Nga 2 
4 (I+ 2)(Z- 1) Q (I- p)’ * 

(6.11) 

We see that the shot noise contributes equally to the scalar and pseudoscalar part of the error. The shot noise is 
white noise, i.e. on small scales (I > 1) both C,?’ and Cf’. become l-independent. Substituting (6.11) into (4.27) 

we may compute the mean square error in the shear for all modes with 1 < L is 

L 2 2. (6.12) 

At small angles the mean square shot-noise in a Gaussian beam is 

dl 21c-‘=0a = &iii? (6.13) 

where we have used br”,hm = 2mU. 

Estimatora for C!? and Cp 

A sum of unbiased estimators of some quantities is itself an unbiased estimator of the sum. Thus combining 
(6.6) with (4.12) we can construct unbiased estimators of the spherical harmonic amplitudes which describe the shear 
field 

(1 - 2)! 

(I Ngl (1: $2) T WI %-,:ab(ti,) e’,b 

Ngl (1: $2) 5: wg ~~,-)=ch) ‘o,d hd’ 

(6.14) 

The superscript g emphasizes that these are estimators derived from a galaxy sample. One can construct estimators 
of the CF and Cp using eq (4.13) 

p = $%nn + I (6.15) 

These are unbid because the shot noise has been subtracted and differ from those in eq (4.13) since those were 
estimators derived from perfect knowledge of the shear pattern on the sky, while these include additional uncertainties 
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due to finite galaxy sampling. Of course real surveys will probably never cover the entire sky and other estimators 

must constructed to deal with finite sky coverage. 

-g 
The mean square deviation of C,$ and ?’ from C,@ and C,@ will depend on the 4-point correlation function 

of the shear as well as the clustering properties of the galaxies. We will not go into such detail here, instead we assume 
Gaussian statistics, i.e. set the reduced 4-point function to zero, and assume Poisson sampling of the shear field. These 
approximations are liable to be good ones for deep samples on large angular scales. In any case, better estimates of 
the uncertainties should be computed. With these assumptions we find 

(( q-q > 

(( 
c-g 
cy - cy > 

(( 
-8 
cp -q > 

so that the l-u fractional uncertainty is 

( 3’ - c,? 1) = 6,/l & cc,“’ + c&?ana) 

( 
-s 
c? - q? >> = iilll & cc,“’ + cyna) 

( +-‘-9)) =o 

(6.16) 

(6.17) 

The 1st term in the radical represents cosmic variance which is more dominant for small 1, while the second is 
uncertainty due to shot noise which is more dominant at large 1. With the above estimate of the error one can define 
a total signal-to-noise: 

(6.18) 

which should be greater than unity in the range of I of interest if one is capable of detecting a significant shear. Note 

that these signal-tonoise ratios include cosmic variance. 

7. A Realistic Example 

Now let us estimate the angular power spectrum of the shear we might expect to find in our own universe. 
Clearly there are large uncertainties in the distribution in maSB in our universe so we cannot predict precisely what 
one will see. In fact the utility of weak lensing is to measure the mass distribution. Here we give a rather simple 

empirically based model, which is meant to be optimistic about the size of the shear which one might find. We are 
also not very realistic about the data one is liable to collect. For example we assume an all-sky volume limited sample 
of galaxies, while one is really liable to obtain a partial-sky magnitude-limited sample. More detailed studies clearly 
should be done. 

On small scales the correlation function of optically selected galaxies appears to be approximately a power law 
(Peebles 1980) as was assumed for the mass in eq (5.22-27). Taking parameters. ro = Sh-‘Mpc and n = -1.2, which 
are close to the values obtained observationally (Humit et ol. 1996) we find 

0.8 0.6 

Cz(S) z (0.0180)’ z (0.0084)az,,a.a 

Cd& VP, P’) = G(d) (~0s 2(+7 - cp’) + 0.5833 cos 2(~ + 9’)) 

G(O) = (0.0235)’ 1 - 
( 

$&.J”’ (&)“.8z (0.0110)~2,,~*~ (&)““. (7.1) 

qo, cp1cp’) = G&q cos 2(P - d) 
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Figure 4: Plotted u a function of 1, for a volume limited survey in an Eimtein-desitter universe is e obtained for am unbiued 

COBEnormdiaed model of adiabatic density fluctuationa give.a by eq (7.3). The yellow, green blue, cyan, magenta, and red pointr 

M for ti limiting l urvey redshift of z m.x =O.l, 0.2, 0.5, 1, 1, and 5 rpectively. The corruponding did lincm give the c for 
the aatne limiting redahift but UGLQJ the cuymptotic approximation md wuming the the UUAU l ale pora law index n = -1.2 OP 

d.l acda. The deviation of the solid linen from the point6 ir primarily due to the turnover in the 8pectrum at large scdes, which 

greater for deeper surveys md lmdla I because these probe luga comoviug scales. The large 1 behwiour in described by eq (7.2), 
i.e. Cl” or I-‘.~z~.~‘.‘, while for deep enough surveys, zm.x 2 1, eq (5.16) dctibes the behaviour, i.e. Cl 3 I with only a we& 

depth dependawe. 

where expressions proportional to z,,‘-’ are appropriate for z,, 4 1. This power law behaviour certainly does 
not persist to very large scales and it is generally believed that the spectrum turns over to something close to a 
Harrison-Zel’dovich spectrum (n = 1) at large scales. As a model of the power spectrum of density inhomogeneities 

on both small and large scales we will use 

Ak 
“(‘) = (1 + (kr,,)a)= 

r,,a-ar&81’(0.6) 

A = 21%rfiIyO.9) . (7.2) 

where we again use ro = 5 h-‘Mpc and n = -1.2 and supplement it with rHS = 38.8h-‘Mpc which matches the COBE 
normalization for adiabatic initial conditions. 

In fig 4 is plotted Cl” from this model for various survey depths, zmur and compare this with the result we would 
obtain if we used the asymptotic approximation of eq (5.9) combined with pure power law spectrum of eqs (5.22-24) 
on all scales. This figure illustrates that the approximations used to derive eq (7.1) are accurate on all angular scales 
for shallow surveys, and on small angular scales power law model for deeper surveys. In fig 5 we plot the rms shear 

contributed by angular scales larger than a given scale, as a function of the minimal scale, again for various values of 
depth. On the largest angular scales one may only find a shear of -, lo- *. We will argue below that there will be 
no significant signal for hu 5 0.1 so we see that for interesting surveys one is looking for a shear 2 3 x lo-*. For 

such a level of shear one needs >, 10s galaxies with good shape information to detect it. One might need many more 

if the galaxy shapes have large statistical or systematic errors. Of course as one goes deeper one needs fewer galaxies. 
One critical issue is whether one is able to make absolute measurements of the shear. If one can then one is sensitive 
to all angular scale larger than the area one surveys. Absolute measurements are possible in principle as one can use 
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Figure St Plotted versus L is the rrm shur contributed by moda with angular r~vammbu I < L. As in lig 3 these are for the 

power spectrum model of eq (7.3) and the yellow, green blue, cym, magenta, md red points M for a tithg survey redshift of 

Lo.= =O.l, 0.2, 0.5, 1, 2, md s respectively. The the solid lines ue to guide the eye. For 1 > 1 this ho eves the mu erpamion, 

K, which is givu the source amplification. 

stellar images to correct for instrumentally or atmospherically induced shear (Kaiser, Squires, and Broadhurst 1995). 
If for some reason one is limited to differential measurements of shear then for small survey areas one loses much of 
the signal. Except for small 1 the rrm, x - 50 that fig 5 also gives the image amplification. Broadhurst, Taylor, 

and Peacock (1995) have proposed a methodology to statistically measure amplification due to gravitational lensing 
and applied it in Broadhurst (1995). 

Some will argue that we the simple mass model used here is probably an overestimate of the magnitude of 
the shear. The author considers it an optimistic estimate, but not wildly so. For non-adiabatic perturbations the 

large scale density inhomogeneities are less than assumed here. Furthermore it has long been argued that the mass 

inhomogeneities on the 8 h-lMpc scale are smaller than the galaxy inhomogeneities (e.g. Henry & Arnaud 1991, White, 
Efstathiou, and Frenk 1993), so that we may also be overestimating the lensing on small scales as well. Furthermore 
the model power spectrum used here clearly has some contribution from non-linear clustering, which is not quite 
consistent with the linear evolution of density perturbations we have assumed in 95. Corrections for the non-linear 
evolution of the power spectrum will be important for deep samples, z 2 0.5, on small angular scales. If galaxies are 
biased tracers of the mass distribution or if the universe is not flat then, with fixed 6p/p, the lensing shear at small 
redshifts scales proportionate to f&/b, where b is the bias factor. The reader may wish to apply this correction using 
his favorite values, which for many probably means reducing the predicted shear by at most a factor of 2 on small 
angular scales. 

Here is considered a volume limited survey, up to redshift hu, and assume no evolution in the number density, 

which is given by ai, and use uniform weighting of all galaxies within the survey volume, i.e. w9 = 1. Using eq (6.8) 
we find 3 

N s- = N,l I- >I = 2.6 x 10’ (7.3) 

where we have taken Qi = 0.012h3/Mpc3 which is the value of this parameter in the Schechter which describes 

23 



1000 

I$- 10 

,; 

1 

I$- 

IO ~“““‘“““..., .,“, 

,; 

-. “... ‘“... ‘“.r. “-“...5”** 
“““=I..~.,, 

•-““~....,.U 
l . . . . . . . 

l- 
-=.... . . . . . . 

0.1 F 0.1 b 

1 
.. .. -... >... - 

0.01 0.01’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ I I I 1 I 1 I I t I 1 , I I I _ 

0 0 20 20 40 40 60 60 80 80 100 100 

1 1 

Flgurc 81 Plotted versus 1 is the ratio of the shear power e to that induced by finite gaky sampliq in a volume limited survey 

with with nm ellipticity 0.3 and galaxy density O.Oll(h/Mpc)‘. A s in figs 314 these are for the power spectrum model of eq (7.3) 
and the yellow, green blue, cyan, magenta, and red points are for a limiting survey redshift of zm.= =O.l, 0.2, 0.5, 1, 2, and 5 

respectively. 

observed galaxies (Loveday et al. 1992). Taking 2 z (0.3)’ we find 

cy = c,- = 3.0 x lo-” 
I(1 + 1) 

(I+ 2)(2 - 1) (1-&d-” 

so that 

JT (r+ ) = 6.9 x lO-‘j ,/(L + 3)(L - 1) 

(7.4) 

(7.5) 

The minimum shot noise occurs when one includes only the quadrupole and at maximum depth, i.e. L = 2 and 

t = co, which yields JT (xz2 ) = 4.8 x lo-“. Th. IS is extremely small, much smaller than the expected signal on these 

scales. While going to very large redshifts may never be feasible, going to z = 
to 3.0 x lo- ‘. 

1, which seems feasible, brings this up 
Measurements to date have detected shear at the level of a few percent. We see that by doing very 

large area and very deep surveys one may in principle measure the shear down to a level up to 1000 times smaller. 
One may run into uncorrectable systematic errors long before one reaches this level, however it is certainly worth the 
effort get as close to the shot noise limit as possible. 

Comparison of Shot Noise With Signal 

It is interesting to compare the shot-noise “signal” with that which one might expect to obtain from density 
fluctuations. Of course density fluctuations produce no pseudo-scalar shear, so we need only compare the scalar 
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Figure 7: Plotted versus 1 in an estimrte of the fnctionel uncertainty (1-w) in the measurement of Ct from e volume limited 

sunple with rms &pticity 0.3 aad g&y density O.O12(h/Mpc)‘. This uncertainty, taken from cq (6.17), includes the c5Tects 
of ii&e galmy Mmpling and cosmic vuiuxe. AJ in figs 3 - 5 these ue for the powa spectrum model of eq (7.?). The ytllor, 

green blue, uxd cy~ point* are for a limiting survey rdshift of ku = 0.1. 0.2, 0.5, md 1. The smallest fractiond uncatrinty, for 

Gslax = 1 ia dominated by cosmic variance for the l’s plotted. One cannot sienificrntly reduce this by SO&J to e grerta depth. 

Less deep surreys ue significantly depded by finite g&y numbers. A sunple with zo,.x = 0.1 survey would yield e margin~Uy 

sign&u& result by combining all I-modes. One would not obtain a significeat signal for zrn.= significantly less than 0.1. 

component of the shear. Comparing eq (5.20) with eq (6.11) we find 

cp 
p= 

144r (1+ 2)! Ng12 ( 1 

(1-2)!N,1 

-953N (‘-;‘,’ 

(7.6) 

I>1 2 6 

where we have used eq (A7) for the small angle limit and eq (5.20) for the volume-limited survey. This ratio is plotted 
in fig 6 and we see that for our model this signal-tonoise exceeds unity in each angular wavenumber, I, for all-sky 
surveys with hu 2 0.2. Of course, as one decreases the sky coverage this signal-to-noise goes down. 

If fig 7 is plotted the fractional uncertainty in a measurement of Cr’ according to eq (6.18). This includes cosmic 
variance, i.e. the additional uncertainty in one’s determination of the global average of quantities due to the sample 
variance associated from looking at the universe from one vantage point. From this fractional uncertainty one can 
compute the total signal-tonoise defined in eq (6.18). This signal-tonoise includes from cosmic variance, unlike the 

ratio of eq (7.6). It is perhaps most interesting to consider the $ where it is close to unity. This leads us to consider 

shallow all-sky surveys where the contribution to & from each individual I is much less than unity. From fig 7 it is 

clear that 6 should grow greater than unity for 0.1 5 z+,, u < 0.2. For this range of zmu it is clear from fig 4 that 
the power law approximations of eqs (7.1) are a good approximation for nearly all 1. We see from fig 7 that cosmic 

variance gives a negligible contribution to AC? for all 1 with & this small. Furthermore it is clear that one can 
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approximate the sum of eq (6.18) with an integral and take the large-I limit of both C,$ and Cr”n. Combining all of 

these approximations we find that for an all-sky survey 

(~)2+ll~sz (Z)lO.’ z,, 5 0.2. (7.7) 

The I-integral converges relatively slowly, so that half the contribution comes from I 5 10 and half from 1 > 10. The 
depth at which this signal-to-noise exceeds unity is not strongly dependent on the assumed amplitude of inhomo- 

geneities, for example if we were decrease the density inhomogeneities by a factor of 2 this would change value of z,, 

at which g equals unity from 0.11 to 0.15. For fractional sky coverage, f.~,, we expect g 5 f$z, although this 
depends in detail on the geometry of the region surveyed. If one makes absolute shear measurements on a small patch 
of the sky then one has limited ability to determine on which angular scale the shear is generated. The extremely 
strong dependence on zmu exhibited by eq (7.7) breaks down for z,, 2 0.2 as one starts to sample the turnover in 

the density power spectrum. 

8. Summary and E’uture Development 

In this paper was presented a formalism of tensor spherical harmonics on the sphere which may be used to 
describe a weak lensing shear pattern over the entire celestial sphere. Many useful formula are presented in this 
paper but little in the form of derivations. A more complete exposition can be found on the world wide web at 
http://www-astr~theory.fnal.gov/Personal/stebbins/WeakLens/ . It was shown that in the all-sky shear pattern may 
be decomposed into geometrically distinct components: scalar shear and pseudoscalar shear. In the weak lensing limit 
only scalar shear is produced by density inhomogeneities, and this is liable to be the only significant component of the 
shear field. Pseudo-scalar shear may be produced by vector and tensor perturbations, although the amplitude is liable 
to be negligible. On small scales one may also get significant pseudescalar shear when the lensing becomes strong due 
to more than one mass concentration along the line-of-sight. Given that one expects negligible pseudo-scalar shear on 
the sky, it’s primary use is liable to be as a gauge of measurement errors. 

In $5 the formalism was applied specifically to density inhomogeneities in an Einstein-deSitter cosmology, and 
in $6 to the study the shot noise one will obtain when trying to measure the shear with a finite number of galaxies. In 

57 we apply the formalism derived to a model of the density perturbations in our universe. We illustrate that there is, 
in principle, a significant signal for wide area galaxy surveys even if one does not have a very deep galaxy sample. For 
example an all-sky survey of galaxies with redshifts less than 0.2 should exhibit a very significant signal of shear from 

gravitational lensing if one could reduce systematic errors below the 5 x lo-’ level in shear. A concerted observational 
effort should be made to see just how small a shear can be reliably measured with present technology from the ground. 
It should be noted that shallow surveys do benefit from the fact that the galaxies subtend a significantly larger angle 
than in deep surveys and thus there is less of a problem with seeing a finite pixelization. Given the large signal-to-noise 
which is present it is clear that some day such shallow large area shear maps will be made, but one may have to wait 
for large space-based optical surveys of the sky to be made. 

The estimates of the expected shear presented in this paper are rather crude in that they assumed a volume 
limited survey and did not properly take into account the evolution of nonlinear clustering. Furthermore the error 
estimates assumed Gaussian statistics. Shallow surveys even over large areas sample the nonlinear clustering regime 
which is non-Gaussian. Proper estimates of the accuracy with which one can measure the shear should include the 
proper sample variance for the non-Gaussian density field. Again further study is needed. 

Both shear and the linear polarization of light are described by a traceless symmetric rank-2 tensor on the 
celestial sphere and most of the mathematic formulae presented here can equally well be applied to a description of 
the linear polarization light on the celestial sphere. Kamionkowski, Kosowsky, and Stebbins (1996) have applied the 
tensor harmonic decomposition to a description of the cosmic microwave background radiation (CMBR). Just as with 
shear, density inhomogeneities (i.e. scalar modes) cannot, in linear theory, produce pseudo-scalar linear polarization 

of light. However in contrast to shear, vector and tensor modes can produce polarization of amplitude comparable to 
that produced by density inhomogeneities. Thus one may interpret any pseudescalar component of linear polarization 
of the CMBR as a direct detection of vector and/or tensor modes. This is in contrast to CMBR anisotropy where one 
cannot distinguish anisotropy induced by scalar modes from that produced by vector or tensor. 
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Appendix: Calculating I[ ( E) 

In this paper we have introduced the function 

(AlI 

where IFa is a generalized Hypergeometric function which can be written in terms of sines, cosines, and Sine integrals, 

Specific cases are 

11(t) = 
-22 + 2 cos 2 + sin 2 + 2’Siz 

2s 

=- 1 - Ia 2 co9 z sin 2 + zzSiz - 

3 223 

13(z) = 
-16d - 3t(lO- 2’) co9 z + 3( 10 + 2) sin 2 + 3z’Siz 

2424 

I’(Z) =; - 
32( 14 + za) cos z - (42 - 112’) sin z + 3z’Siz 

8d 

where the sine integral function, Si, is 

Si(z) = 1’ $ sin 2. 

(A’4 

(A3) 

These expressions become increasingly more complicated for large 1 and can involve enormous cancelation between 
terms. While symbolic algebra program do provide a generalized Hypergeometric functions, they are generally noisy 
for large arguments. Luckily one can derive accurate methods of calculating II(Z) based on the asymptotic expansions 
of this function. Using the Taylor series expansion of the spherical Bessel function in the definition of 11 we find 

4(z) = 2 

(- 1)” ++1 

n=O 2”(2(1+ ta) + l)!! n! (2n + 1) (2n + I+ 1) * 

For large z it we can expand Ii(z) in powers of l/t yielding 

I,(=) - 6 1 rw 1 WY) ++ 
( 
-- _ _.- 

1 w9) z r(f) ) 

(A41 

(A51 

Between the series of (A4) for z 5 I and the series (A5) for t 2 1 one can compute II(Z) accurately for all values of z 
as long as 1 is not too large. While these series involves significant cancelation for z m 1 one can use symbolic algebra 
programs to exactly compute the series up to a given order for rational values of z and interpolate in between. 

Asymptotic Approximation and Small-Angle Limit 

For large I one finds that I,(z) is well approximated by just the asymptotic form of (A5) where this is positive, 

and where (A5) is negative II(Z) is negligibly smail, i.e. 

II(Z)% (a2) 1((A) =,=$a b,+kJ (W 

where ‘H() is the Lorentz-Heaviside function which is unity for positive argument and zero otherwise. Taking the large 
I limit of the factorial ratios this becomes 

4(.)~& (i-i) X(2-1) I>,. 

The the fractional error of (A7) goes to zero for large 1 and z > 1 while the absolute error goes to zero for large 1 and 
2 < 1. 
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Volume Average: ?; 

In this paper we have considered the mean shear from uniform distance limited iLan Einstein-deSitter cosmology 

where the gravitational potential is assumed to be constant. In this case one use I& defined in eq (5.12) with the 

visibility function of eq (4.42) to compute the mean shear. The Taylor series of the resultant function is 

(- 1)” Zmuan+’ 
=mu 3 kr,,. (.A81 

Note that by making ?; a function of kr,, rather than just k we are using a slightly different notation than in the 

body of the paper. One may defined an asymptotic approximation just as in eq (A6) which is 

Z(hlu) = 
3 61 -- 

a’ - 2 a?=- + 

where a1 and Lf are defined just as in eq (A6). The large 1 limit of this function is 

l;(zmui’=i 1 $( 5 l--- 31 1P - 
2 %lu + 22& > 

‘H(%lu- 1) lw 1. 

(‘w 

(AlO) 

Numerically the function & as a function of z,, is not very different than the 11 as a function of Z. 
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